

Leveraging AI to generate same benefits from 10% data

Problem

Sensor data

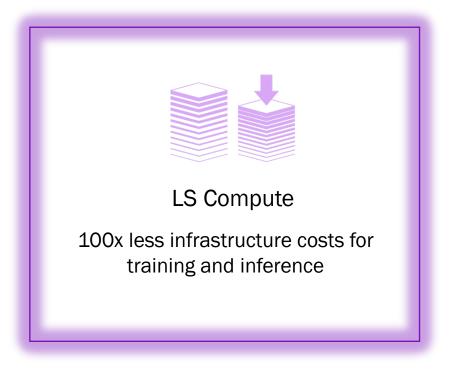
73+ Trillion GB by 2025

Infrastructure cost

\$100M+ annual cloud costs

Human capital cost

1 hour of data = **40+ hours** of analysis


Solution

Leverage AI to automatically identify the 10% high-value data from voluminous data streams

- Reduces 90% of the AI infra and people related time & costs
- Enables new embedded AI applications currently unobtainable due compute, latency, memory, & time bottlenecks

Product

25k lines of patented code + 5 years R&D into 4 lines of user-facing code

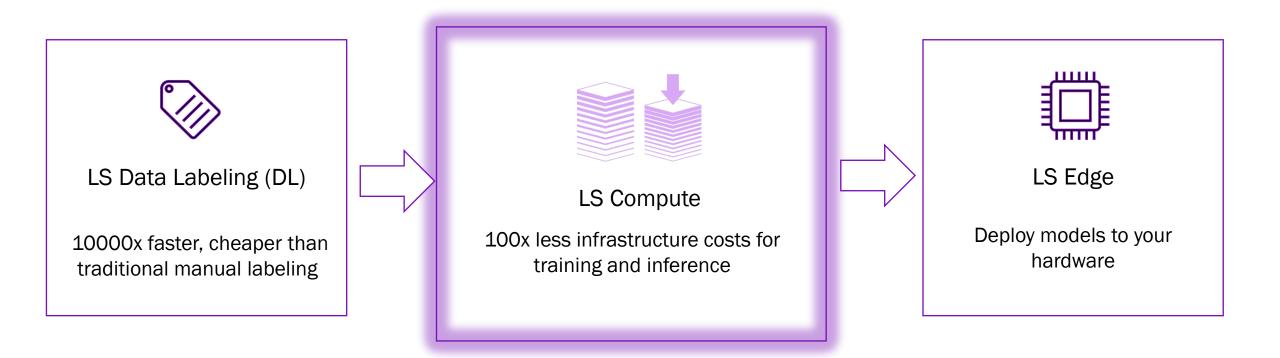
•••

from lightscline.lightscline import LightsclineEdge
Load data into Lightscline
ls = Lightscline(data=data,fs = SAMPLING_FREQUENCY)
Reduce the amount of data by 70% of the original
ls.reduce_and_preprocess_data(per_reduction=70)
Train the model
ls.train_model(verbose=True,n_iters = 1000)
checking the results
ls.test_model()

ls.test_model()

- Setup within 10 mins
- On-prem / cloud hosting
- No data sharing required

Conventional vs. Lightscline AI workflow



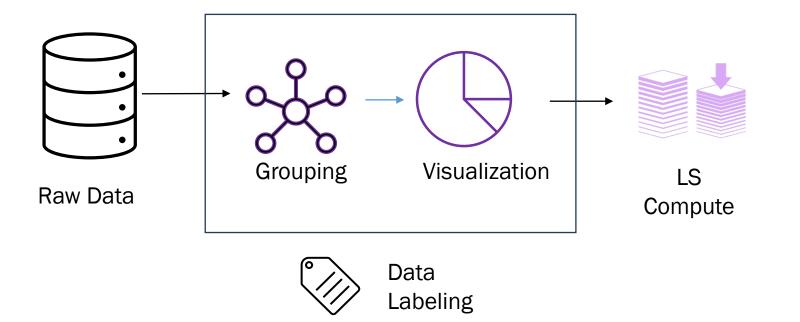
Two more things..

Our end-to-end offering

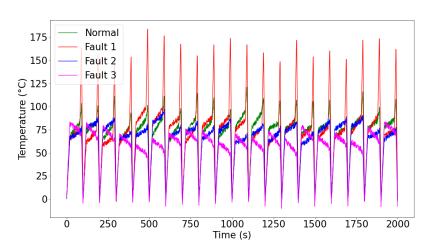
Customer case-studies

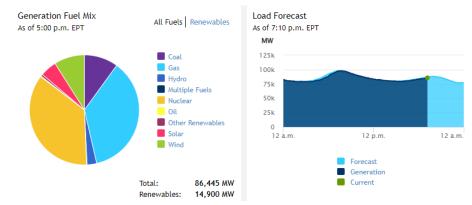
Enterprise energy monitoring

Asset Health Management



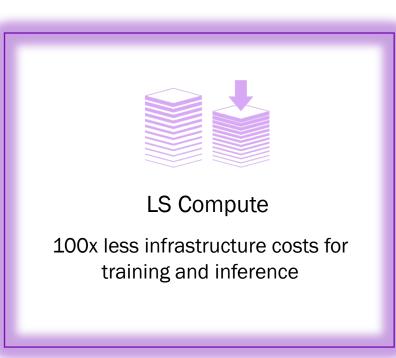
Human Activity Recognition


Lightscline Data Labeling


Enterprise energy monitoring

Helps data scientists select 100 useful windows from 10MM+ collected over 3 years

Figure out the reason for 100 MWh excess energy consumption


Analyze 100 useful windows which were previously hidden in an S3 bucket

% data used	Accuracy
8	99.9
10	99.9
15	100

*enables applications not possible today

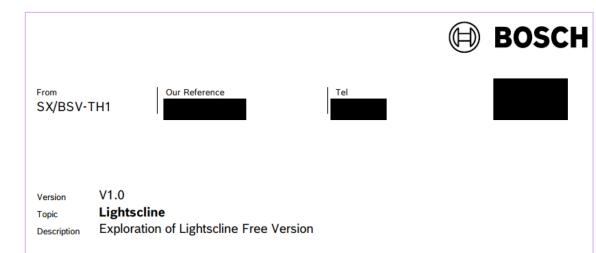
Lightscline Compute

Asset Health Management

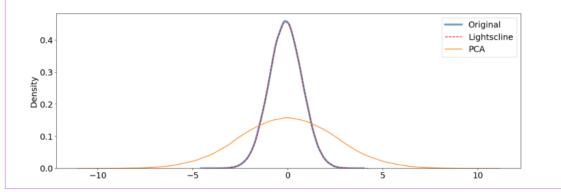
We tried the free version on other datasets and accuracies are mentioned in the below table:

S No	Dataset	Sampling Frequency	Accuracy
1.	Bearing	97656 Hz	86%
2.	Wind turbine planetary gearbox	40000 Hz	100%
3.	Unbalanced Impeller Centrifugal Blower	8000	95.2%
4.	Loose and Dent Impeller Centrifugal Blower	8000	84.6%

With just 10% data



Asset Health Management



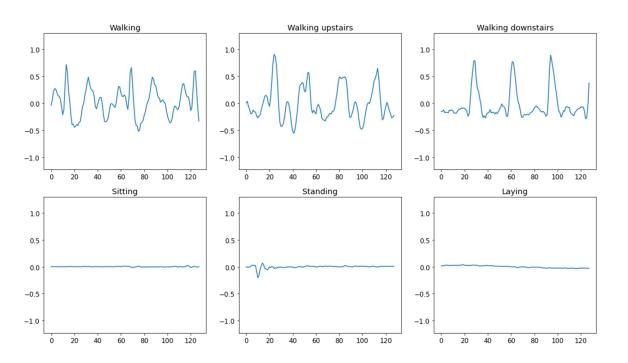
Lightscline Data Reduction Al

Data reduction technique was a good approach it eliminated redundant information and focused solely on relevant data. The technique was compared with Principal Component Analysis (PCA) and the distributions were found to be different. Lightscline's approach to data reduction kept the distribution of the data intact. Plots below shows the comparison with PCA.

Human Activity Recognition on wearables

Activities performed by subjects (in seconds)

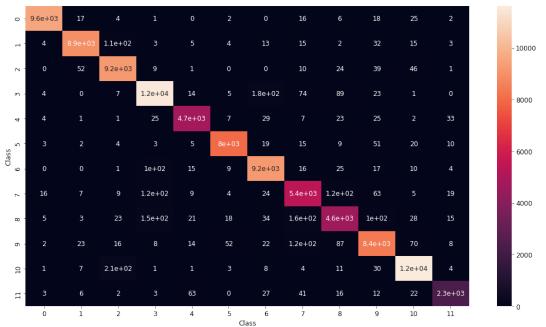
	subject101	subject102	subject103	subject104	subject105	subject106	subject107	subject108	subject109	Sum	Nr. of subjects
1 – lying	271.86	234.29	220.43	230.46	236.98	233.39	256.1	241.64	0	1925.15	8
2 – sitting	234.79	223.44	287.6	254.91	268.63	230.4	122.81	229.22	0	1851.8	8
3 – standing	217.16	255.75	205.32	247.05	221.31	243.55	257.5	251.59	0	1899.23	8
4 – walking	222.52	325.32	290.35	319.31	320.32	257.2	337.19	315.32	0	2387.53	8
5 – running	212.64	92.37	0	0	246.45	228.24	36.91	165.31	0	981.92	6
6 – cycling	235.74	251.07	0	226.98	245.76	204.85	226.79	254.74	0	1645.93	7
7 – Nordic walking	202.64	297.38	0	275.32	262.7	266.85	287.24	288.87	0	1881	7
9 – watching TV	836.45	0	0	0	0	0	0	0	0	836.45	1
10 – computer work	0	0	0	0	1108.82	617.76	0	687.24	685.49	3099.31	4
11 – car driving	545.18	0	0	0	0	0	0	0	0	545.18	1
12 – ascending stairs	158.88	173.4	103.87	166.92	142.79	132.89	176.44	116.81	0	1172	8
13 – descending stairs	148.97	152.11	152.72	142.83	127.25	112.7	116.16	96.53	0	1049.27	8
16 – vacuum cleaning	229.4	206.82	203.24	200.36	244.44	210.77	215.51	242.91	0	1753.45	8
17 – ironing	235.72	288.79	279.74	249.94	330.33	377.43	294.98	329.89	0	2386.82	8
18 – folding laundry	271.13	0	0	0	0	217.85	0	236.49	273.27	998.74	4
19 – house cleaning	540.88	0	0	0	284.87	287.13	0	416.9	342.05	1871.83	5
20 – playing soccer	0	0	0	0	0	0	0	181.24	287.88	469.12	2
24 – rope jumping	129.11	132.61	0	0	77.32	2.55	0	88.05	63.9	493.54	6
Labeled total	4693.07	2633.35	1743.27	2314.08	4117.97	3623.56	2327.63	4142.75	1652.59	27248.27	
Total	6957.67	4469.99	2528.32	3295.75	5295.54	4917.78	3135.98	5884.41	2019.47	38504.91	



Human Activity Recognition

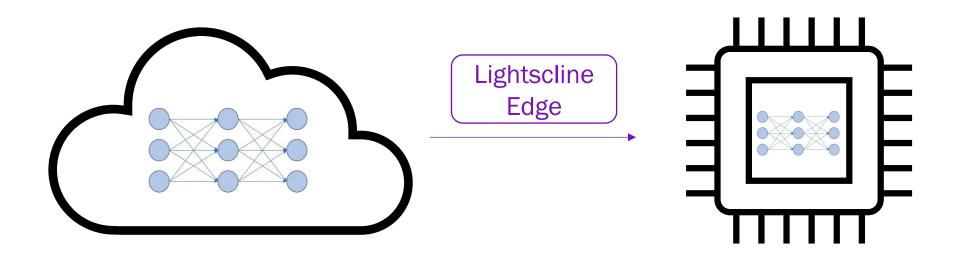
Model size reduction by ~9x and significant speed-ups

93% accuracy on UCI HAPT dataset (6 classes)

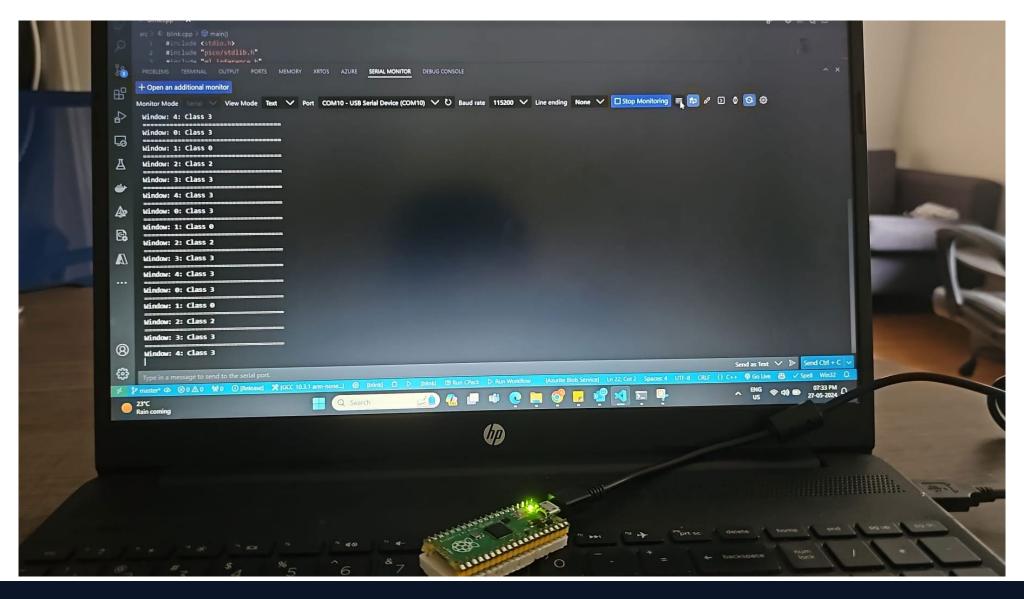


ne

Data Reduction Al

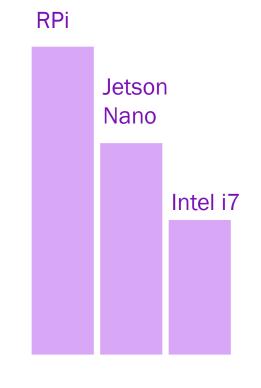

96.7% accuracy on PAMAP2 dataset (12/18 classes)

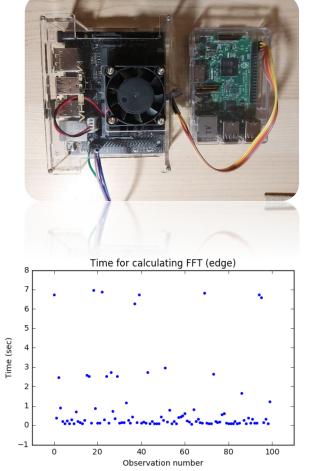
Confusion matrix for PAM, 12 classes



Lightscline Edge

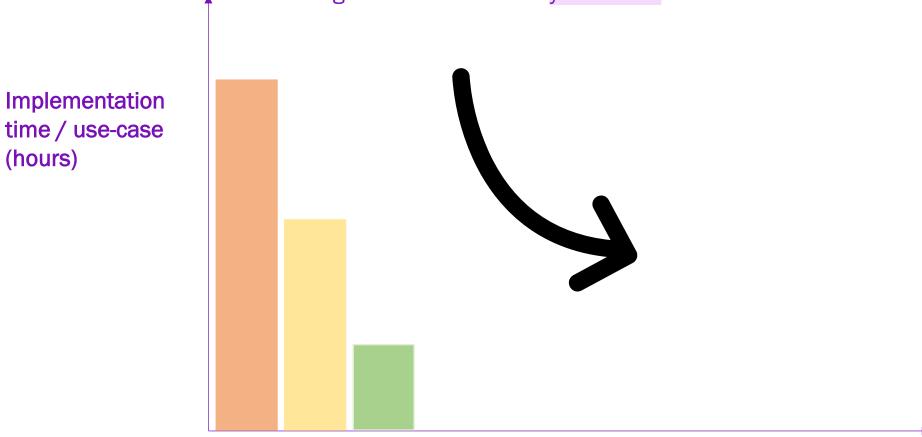
Edge deployment - <256 kB RAM, ~mW power




Edge deployment - <256 kB RAM, ~mW power

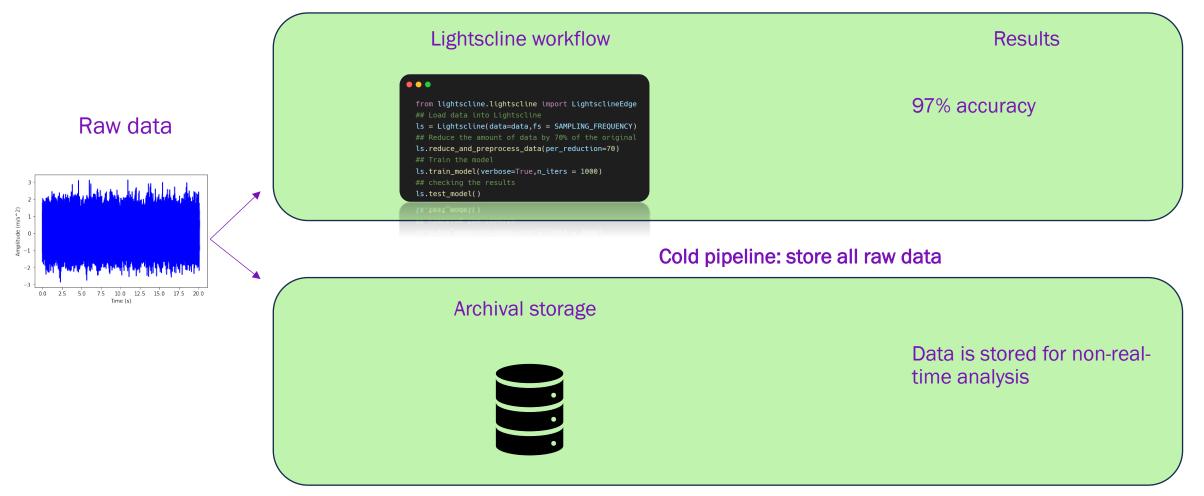
🕒 blink.cpp M 🗙	Mute Start Video		chat New share	Pause Share Kemot	e control Apps	More	\$~ €
src > G• blink.cpp > 🏵 main()							
<pre>6 int main() { 15 stdio_init_all(); 16 setup(); 17 printf("starting ML models\n"); 18 while (true) { 19 gpio_put(led_pin, true); 20 inference(); </pre>							
21 gpio_put(led_pin, false); 22 3							
PROBLEMS TERMINAL OUTPUT PORTS MEMORY	XRTOS AZURE SERIAL MO	NITOR DEBUG CONSOLE					
+ Open an additional monitor							
Monitor Mode Serial View Mode Text V	Port COM10 - USB Serial Device	e (COM10) 〜 ひ Ba	ud rate 115200 🗸	Line ending None 🗸	✓ ▷ Start Monitoring	🚍 🕸 🐼 🗔	🔉 🤀
Closed the serial port COM10 Opened the serial port COM10							
======================================							
Window: 1: Class Ø							
Window: 2: Class 2							
Window: 3: Class 3							
Window: 4: Class 3							
Window: 0: Class 3							
Window: 1: Class Ø							
Window: 2: Class 2							
Window: 3: Class 3							
Window: 4: Class 3							

We deploy your models as fast as they are trained!

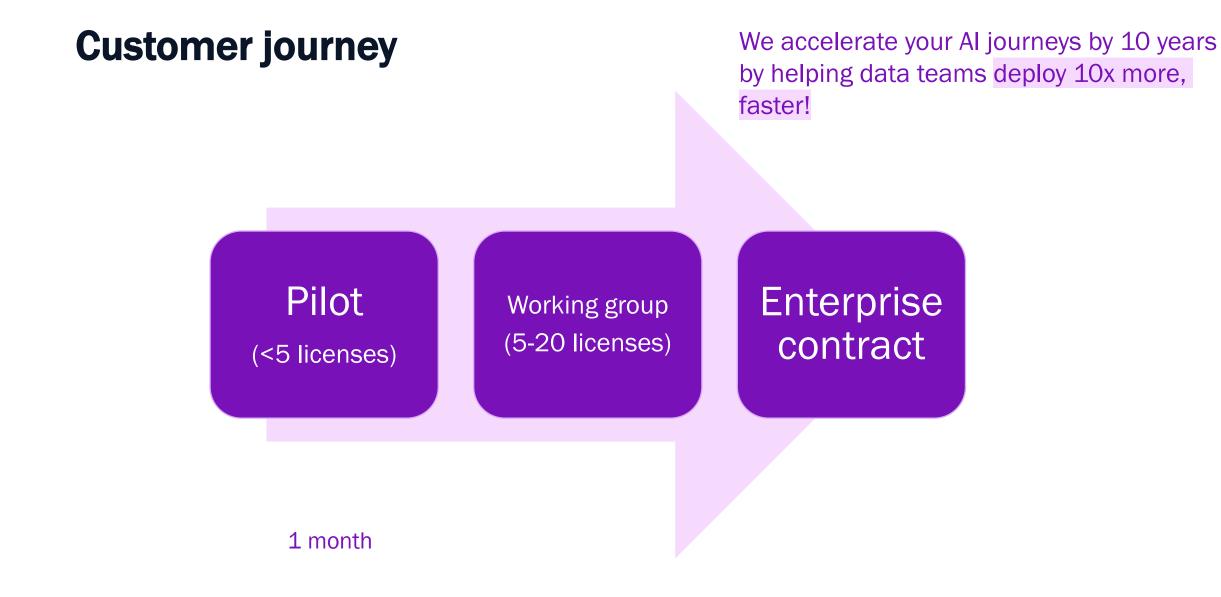


Time

We 10x'ed our productivity by quickly scaling to different use-cases



Imagine how much more your teams can do!


No. of use-cases

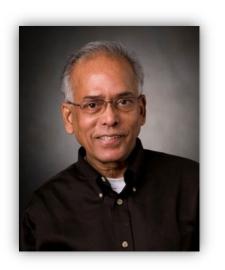
Engagement with Lightscline

Off the shelf product:

End-to-end predictions

Customized product:

We will work with you to solve your use-case and modify our solutions accordingly


Team

Ankur Verma, PhD Co-Founder & CEO, 30 under 30 - Society of Mfg Engg, Ex-Fraunhofer, GM R&D

Ayush Goyal Co-Founder & CTO, Ex-UHG

Prof. Soundar Kumara Co-Founder & Chief Scientist, Allen E. Pearce and Allen M. Pearce Professor of Industrial Engineering, Father of Smart Manufacturing

